
Package: abind (via r-universe)
October 12, 2024

Version 1.4-8

Date 2024-09-08

Title Combine Multidimensional Arrays

Maintainer Tony Plate <tplate@acm.org>

Description Combine multidimensional arrays into a single array. This
is a generalization of 'cbind' and 'rbind'. Works with
vectors, matrices, and higher-dimensional arrays (aka tensors).
Also provides functions 'adrop', 'asub', and 'afill' for
manipulating, extracting and replacing data in arrays.

Depends R (>= 1.5.0)

Imports methods, utils

License MIT + file LICENSE

NeedsCompilation no

Author Tony Plate [aut, cre], Richard Heiberger [aut]

Date/Publication 2024-09-12 17:40:54 UTC

Repository https://tplate.r-universe.dev

RemoteUrl https://github.com/cran/abind

RemoteRef HEAD

RemoteSha 2e972bab72a784857170540814755b50fcd4f97e

Contents
abind . 2
acorn . 5
adrop . 6
afill . 7
asub . 10

Index 12

1

2 abind

abind Combine multi-dimensional arrays

Description

Combine multi-dimensional arrays. This is a generalization of cbind and rbind. Takes a sequence
of vectors, matrices, or arrays and produces a single array of the same or higher dimension.

Usage

abind(..., along=N, rev.along=NULL, new.names=NULL, force.array=TRUE,
make.names=use.anon.names, use.anon.names=FALSE,
use.first.dimnames=FALSE, hier.names=FALSE, use.dnns=FALSE)

Arguments

... Any number of vectors, matrices, arrays, or data frames. The dimensions of all
the arrays must match, except on one dimension (specified by along=). If these
arguments are named, the name will be used for the name of the dimension
along which the arrays are joined. Vectors are treated as having a dim attribute
of length one.
Alternatively, there can be one (and only one) list argument supplied, whose
components are the objects to be bound together. Names of the list components
are treated in the same way as argument names.

along (optional) The dimension along which to bind the arrays. The default is the last
dimension, i.e., the maximum length of the dim attribute of the supplied arrays.
along= can take any non-negative value up to the minimum length of the dim
attribute of supplied arrays plus one. When along= has a fractional value, a
value less than 1, or a value greater than N (N is the maximum of the lengths of
the dim attribute of the objects to be bound together), a new dimension is created
in the result. In these cases, the dimensions of all arguments must be identical.

rev.along (optional) Alternate way to specify the dimension along which to bind the ar-
rays: along = N + 1 - rev.along. This is provided mainly to allow easy specifi-
cation of along = N + 1 (by supplying rev.along=0). If both along and rev.along
are supplied, the supplied value of along is ignored.

new.names (optional) If new.names is a list, it is the first choice for the dimnames attribute
of the result. It should have the same structure as a dimnames attribute. If
the names for a particular dimension are NULL, names for this dimension are
constructed in other ways.
If new.names is a character vector, it is used for dimension names in the same
way as argument names are used. Zero length ("") names are ignored.

force.array (optional) If FALSE, rbind or cbind are called when possible, i.e., when the argu-
ments are all vectors, and along is not 1, or when the arguments are vectors or
matrices or data frames and along is 1 or 2. If rbind or cbind are used, they will
preserve the data.frame classes (or any other class that r/cbind preserve). Other-
wise, abind will convert objects to class array. Thus, to guarantee that an array

abind 3

object is returned, supply the argument force.array=TRUE. Note that the use
of rbind or cbind introduces some subtle changes in the way default dimension
names are constructed: see the examples below.

make.names (optional) If TRUE, the last resort for dimnames for the along dimension will be
the deparsed versions of anonymous arguments. This can result in cumbersome
names when arguments are expressions.
<p>The default is FALSE.

use.anon.names (optional) use.anon.names is a deprecated synonym for make.names.
use.first.dimnames

(optional) When dimension names are present on more than one argument, should
dimension names for the result be take from the first available (the default is to
take them from the last available, which is the same behavior as rbind and
cbind.)

hier.names (optional) If TRUE, dimension names on the concatenated dimension will be
composed of the argument name and the dimension names of the objects being
bound. If a single list argument is supplied, then the names of the components
serve as the argument names. hier.names can also have values "before" or
"after"; these determine the order in which the argument name and the dimen-
sion name are put together (TRUE has the same effect as "before").

use.dnns (default FALSE) Use names on dimensions, e.g., so that names(dimnames(x)) is
non-empty. When there are multiple possible sources for names of dimnames,
the value of use.first.dimnames determines the result.

Details

The dimensions of the supplied vectors or arrays do not need to be identical, e.g., arguments can be
a mixture of vectors and matrices. abind coerces arguments by the addition of one dimension in
order to make them consistent with other arguments and along=. The extra dimension is added in
the place specified by along=.

The default action of abind is to concatenate on the last dimension, rather than increase the number
of dimensions. For example, the result of calling abind with vectors is a longer vector (see first
example below). This differs from the action of rbind and cbind which is to return a matrix when
called with vectors. abind can be made to behave like cbind on vectors by specifying along=2, and
like rbind by specifying along=0.

The dimnames of the returned object are pieced together from the dimnames of the arguments, and
the names of the arguments. Names for each dimension are searched for in the following order:
new.names, argument name, dimnames (or names) attribute of last argument, dimnames (or names)
attribute of second last argument, etc. (Supplying the argument use.first.dimnames=TRUE changes
this to cause abind to use dimnames or names from the first argument first. The default behavior
is the same as for rbind and cbind: use dimnames from later arguments.) If some names are sup-
plied for the along dimension (either as argument names or dimnames in arguments), names are
constructed for anonymous arguments unless use.anon.names=FALSE.

Value

An array with a dim attribute calculated as follows.

4 abind

Let rMin=min(sapply(list(...), function(x) length(dim(x)))) and rMax=max(sapply(list(...),
function(x) length(dim(x)))) (where the length of the dimensions of a vector are taken to be
1). Then rMax should be equal to or one greater than rMin.

If along refers to an existing dimension, then the length of the dim attribute of the result is rMax. If
along does not refer to an existing dimension, then rMax should equal rMin and the length of the
dim attribute of the result will be rMax+1.

rbind or cbind are called to compute the result if (a) force.array=FALSE; and (b) the result will
be a two-dimensional object.

Note

It would be nice to make abind() an S3 generic, but S3 generics cannot dispatch off anonymous
arguments.

The ability of abind() to accept a single list argument removes much of the need for constructs
like do.call("abind", list.of.arrays). Instead, just do abind(list.of.arrays). The direct
construct is preferred because do.call() construct can sometimes consume more memory during
evaluation.

Author(s)

Tony Plate <tplate@acm.org> and Richard Heiberger

Examples

Five different ways of binding together two matrices
x <- matrix(1:12,3,4)
y <- x+100
dim(abind(x,y,along=0)) # binds on new dimension before first
dim(abind(x,y,along=1)) # binds on first dimension
dim(abind(x,y,along=1.5))
dim(abind(x,y,along=2))
dim(abind(x,y,along=3))
dim(abind(x,y,rev.along=1)) # binds on last dimension
dim(abind(x,y,rev.along=0)) # binds on new dimension after last

Unlike cbind or rbind in that the default is to bind
along the last dimension of the inputs, which for vectors
means the result is a vector (because a vector is
treated as an array with length(dim(x))==1).
abind(x=1:4,y=5:8)
Like cbind
abind(x=1:4,y=5:8,along=2)
abind(x=1:4,matrix(5:20,nrow=4),along=2)
abind(1:4,matrix(5:20,nrow=4),along=2)
Like rbind
abind(x=1:4,matrix(5:20,nrow=4),along=1)
abind(1:4,matrix(5:20,nrow=4),along=1)
Create a 3-d array out of two matrices
abind(x=matrix(1:16,nrow=4),y=matrix(17:32,nrow=4),along=3)
Use of hier.names

acorn 5

abind(x=cbind(a=1:3,b=4:6), y=cbind(a=7:9,b=10:12), hier.names=TRUE)
Use a list argument
abind(list(x=x, y=x), along=3)
Use lapply(..., get) to get the objects
an <- c('x','y')
names(an) <- an
abind(lapply(an, get), along=3)

acorn Return a corner of an array object (like head)

Description

Return a small corner of an array object, like head() or tail() but taking only a few slices on each
dimension.

Usage

acorn(x, n=6, m=5, r=1, ...)

Arguments

x An array (including a matrix or a data frame)

n, m, r Numbers of items on each dimension. A negative number is interpreted as this
many items at the end (like tail).

... Further arguments specifying numbers of slices to return on each dimension.

Details

Like head() for multidimensional arrays, with two differences: (1) returns just a few items on each
dimension, and (2) negative numbers are treated like tail().

Value

An object like x with fewer elements on each dimension.

Author(s)

Tony Plate <tplate@acm.org>

Examples

x <- array(1:24,dim=c(4,3,2),dimnames=rev(list(letters[1:2],LETTERS[1:3],letters[23:26])))
acorn(x)
acorn(x, 3)
acorn(x, -3)
acorn(x, 3, -2)

6 adrop

adrop Drop dimensions of an array object

Description

Drop degenerate dimensions of an array object. Offers less automaticity and more control than the
base drop() function. adrop() is a S3 generic, with one method, adrop.default, supplied in the
abind package.

Usage

adrop(x, drop = TRUE, named.vector = TRUE, one.d.array = FALSE, ...)

Arguments

x An array (including a matrix)

drop A logical or numeric vector describing exactly which dimensions to drop. It is
intended that this argument be supplied always. The default is very rarely useful
(drop=TRUE means drop the first dimension of a 1-d array).

named.vector Optional, defaults to TRUE. Controls whether a vector result has names derived
from the dimnames of x.

one.d.array Optional, defaults to FALSE. If TRUE, a one-dimensional array result will be an
object with a dim attribute of length 1, and possibly a dimnames attribute. If
FALSE, a one-dimensional result will be a vector object (named if named.vector==TRUE).

... There are no additional arguments allowed for adrop.default but other meth-
ods may use them.

Details

Dimensions can only be dropped if their extent is one, i.e., dimension i of array x can be dropped
only if dim(x)[i]==1. It is an error to request adrop to drop a dimension whose extent is not 1.

A 1-d array can be converted to a named vector by supplying drop=NULL (which means drop no
dimensions, and return a 1-d array result as a named vector).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then adrop returns an object like
x, but with the requested extents of length one removed. Any accompanying dimnames attribute is
adjusted and returned with x.

Author(s)

Tony Plate <tplate@acm.org>

See Also

abind

afill 7

Examples

x <- array(1:24,dim=c(2,3,4),dimnames=list(letters[1:2],LETTERS[1:3],letters[23:26]))
adrop(x[1,,,drop=FALSE],drop=1)
adrop(x[,1,,drop=FALSE],drop=2)
adrop(x[,,1,drop=FALSE],drop=3)
adrop(x[1,1,1,drop=FALSE],drop=1)
adrop(x[1,1,1,drop=FALSE],drop=2)
adrop(x[1,1,1,drop=FALSE],drop=3)
adrop(x[1,1,1,drop=FALSE],drop=1:2)
adrop(x[1,1,1,drop=FALSE],drop=1:2,one.d=TRUE)
adrop(x[1,1,1,drop=FALSE],drop=1:2,named=FALSE)
dim(adrop(x[1,1,1,drop=FALSE],drop=1:2,one.d=TRUE))
dimnames(adrop(x[1,1,1,drop=FALSE],drop=1:2,one.d=TRUE))
names(adrop(x[1,1,1,drop=FALSE],drop=1:2,one.d=TRUE))
dim(adrop(x[1,1,1,drop=FALSE],drop=1:2))
dimnames(adrop(x[1,1,1,drop=FALSE],drop=1:2))
names(adrop(x[1,1,1,drop=FALSE],drop=1:2))

afill Fill an array with subarrays

Description

Fill an array with subarrays. afill uses the dimension names in the value in determining how to fill
the LHS, unlike standard array assignment, which ignores dimension names in the value. afill()
is a S3 generic, with one method, afill.default, supplied in the abind package.

Usage

afill(x, ..., excess.ok = FALSE, local = TRUE) <- value

Arguments

x An array to be changed

... Arguments that specify indices for x. If length(dim(value)) < length(dim(x)),
then exactly length(dim(x)) anonymous arguments must be supplied, with
empty ones corresponding to dimensions of x that are supplied in value.

excess.ok If there are elements of the dimensions of value that are not found in the corre-
sponding dimensions of x, they will be discarded if excess.ok=TRUE.

local Should the assignment be done in on a copy of x, and the result returned (normal
behavior). If local=FALSE the assignment will be done directly on the actual
argument supplied as x, which can be more space efficient.

value A vector or array, with dimension names that match some dimensions of x

8 afill

Details

The simplest use of afill is to fill a sub-matrix. Here is an example of this usage:

> (x <- matrix(0, ncol=3, nrow=4, dimnames=list(letters[1:4], LETTERS[24:26])))
X Y Z

a 0 0 0
b 0 0 0
c 0 0 0
d 0 0 0
> (y <- matrix(1:4, ncol=2, nrow=2, dimnames=list(letters[2:3], LETTERS[25:26])))
Y Z

b 1 3
c 2 4
> afill(x) <- y
> x
X Y Z

a 0 0 0
b 0 1 3
c 0 2 4
d 0 0 0
>

The above usage is equivalent (when x and y have appropriately matching dimnames) to

> x[match(rownames(y), rownames(x)), match(colnames(y), colnames(x))] <- y

A more complex usage of afill is to fill a sub-matrix in a slice of a higher-dimensional array. In
this case, indices for x must be supplied as arguments to afill, with the dimensions corresponding
to those of value being empty, e.g.:

> x <- array(0, dim=c(2,4,3), dimnames=list(LETTERS[1:2], letters[1:4], LETTERS[24:26]))
> y <- matrix(1:4, ncol=2, nrow=2, dimnames=list(letters[2:3], LETTERS[25:26]))
> afill(x, 1, ,) <- y
> x[1,,]
X Y Z

a 0 0 0
b 0 1 3
c 0 2 4
d 0 0 0
> x[2,,]
X Y Z

a 0 0 0
b 0 0 0
c 0 0 0
d 0 0 0
>

The most complex usage of afill is to fill a sub-matrix in multiple slice of a higher-dimensional
array. Again, indices for x must be supplied as arguments to afill, with the dimensions corre-

afill 9

sponding to those of value being empty. Indices in which all slices should be filled can be supplied
as TRUE. E.g.:

> x <- array(0, dim=c(2,4,3), dimnames=list(LETTERS[1:2], letters[1:4], LETTERS[24:26]))
> y <- matrix(1:4, ncol=2, nrow=2, dimnames=list(letters[2:3], LETTERS[25:26]))
> afill(x, TRUE, ,) <- y
> x[1,,]
X Y Z

a 0 0 0
b 0 1 3
c 0 2 4
d 0 0 0
> x[2,,]
X Y Z

a 0 0 0
b 0 1 3
c 0 2 4
d 0 0 0
>

In the above usage, afill takes care of replicating value in the appropriate fashion (which is not
straghtforward in some cases).

Value

The object x is changed. The return value of the assignment is the parts of the object x that are
changed. This is similar to how regular subscript-replacement behaves, e.g., the expression x[2:3]
<- 1:2 returns the vector 1:2, not the entire object x. However, note that there can be differences

Author(s)

Tony Plate <tplate@acm.org>

See Also

Extract

Examples

fill a submatrix defined by the dimnames on y
(x <- matrix(0, ncol=3, nrow=4, dimnames=list(letters[1:4], LETTERS[24:26])))
(y <- matrix(1:4, ncol=2, nrow=2, dimnames=list(letters[2:3], LETTERS[25:26])))
afill(x) <- y
x
all.equal(asub(x, dimnames(y)), y) # TRUE
fill a slice in a higher dimensional array
x <- array(0, dim=c(2,4,3), dimnames=list(LETTERS[1:2], letters[1:4], LETTERS[24:26]))
y <- matrix(1:4, ncol=2, nrow=2, dimnames=list(letters[2:3], LETTERS[25:26]))
afill(x, 1, ,) <- y
x[1,,]
x[2,,]

10 asub

all.equal(asub(x, c(1,dimnames(y))), y) # TRUE
fill multiple slices
x <- array(0, dim=c(2,4,3), dimnames=list(LETTERS[1:2], letters[1:4], LETTERS[24:26]))
y <- matrix(1:4, ncol=2, nrow=2, dimnames=list(letters[2:3], LETTERS[25:26]))
afill(x, TRUE, ,) <- y
x[1,,]
x[2,,]
all.equal(asub(x, c(1,dimnames(y))), y) # TRUE
all.equal(asub(x, c(2,dimnames(y))), y) # TRUE

asub Arbitrary subsetting of array-like objects at specified indices

Description

Subset array-like objects at specified indices. asub() is a S3 generic, with one method, asub.default,
supplied in the abind package.

Usage

asub(x, idx, dims = seq(length.out = max(length(dim(x)), 1)), drop = NULL, ...)

Arguments

x The object to index
idx A list of indices (e.g., a list of a mixture of integer, character, and logical

vectors, but can actually be anything). Can be just a vector in the case that
length(dims)==1. NULL entries in the list will be treated as empty indices.

dims The dimensions on which to index (a numeric or integer vector). The default is
all of the dimensions.

drop The ’drop’ argument to index with (the default is to not supply a ’drop’ argument
... There are no additional arguments allowed for asub.default but other methods

may use them.

Details

Constructs and evaluates an expression to do the requested indexing. E.g., for x with length(dim(x))==4
the call asub(x, list(c("a","b"), 3:5), 2:3) will construct and evaluate the expression x[,
c("a","b"), 3:5,], and the call asub(x, 1, 2, drop=FALSE) will construct and evaluate the ex-
pression x[, 1, , , drop=FALSE].

asub checks that the elements of dims are in the range 1 to length(dim(x)) (in the case that x
is a vector, length(x) is used for dim(x)). Other than that, no checks are made on the suitability
of components of idx as indices for x. If the components of idx have any out-of-range values or
unsuitable types, this will be left to the subsetting method for x to catch.

Value

A subset of x, as returned by x[...].

asub 11

Author(s)

Tony Plate <tplate@acm.org>

References

~put references to the literature/web site here ~

See Also

Extract

Examples

x <- array(1:24,dim=c(2,3,4),dimnames=list(letters[1:2],LETTERS[1:3],letters[23:26]))
asub(x, 1, 1, drop=FALSE)
asub(x, list(1:2,3:4), c(1,3))

Index

∗ array
abind, 2
acorn, 5
adrop, 6
afill, 7
asub, 10

∗ manip
abind, 2
acorn, 5
adrop, 6
afill, 7
asub, 10

abind, 2, 6
acorn, 5
adrop, 6
afill, 7
afill<- (afill), 7
ahead (acorn), 5
asub, 10

Extract, 9, 11

12

	abind
	acorn
	adrop
	afill
	asub
	Index

